

MaRDI TA2: Research Data and Reproducibility in Scientific Computing

Peter Benner, Christian Himpe, Kathryn Lund, Saksham Malhotra, Tim Mitchell, Jens Saak, Malte Speidel, Alexander Stage

Computational Reproducibility Seminar of the Swiss Reproducibility Network November 15, 2023

Outline

Scientific computing within MaRDI

M 2.3 — MaRDIMark

Model Order Reduction Wiki (MORWiki)

Model Order Reduction Benchmarker (MORB)

Analyzing a Collection of Collections (MathBench)

Outline

Scientific computing within MaRDI

MaRDI — THE Mathematical Research Data Initiative Overview of Task Area 2 (TA2)

M 2.3 — MaRDIMark

Model Order Reduction Wiki (MORWiki)

Model Order Reduction Benchmarker (MORB)

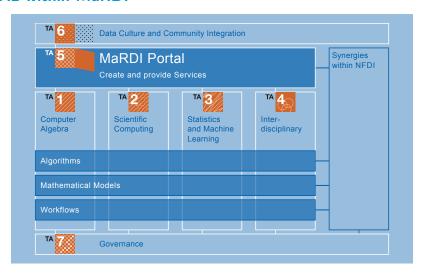
Analyzing a Collection of Collections (MathBench)

MaRDI — THE Mathematical Research Data Initiative

- 1 out of 27 NFDI consortia
- the one consortium of mathematics
- ▶ 16 institutions and partners
- kick-off November 2021
- 28 (full-time equivalent) employees
- funding over a period of five years

Mathematisches Forschungsinstitut

Fraunhofer



TA2 within MaRDI

MaRDI Task Area 2: Measures and major objectives

Objects / Data
problem
input
model
benchmark
algorithm
output
solution
visualization
.....

M1 Knowledge Graph of Numerical Algorithms

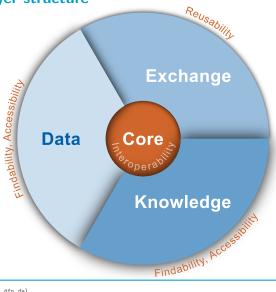
M2 Open Interfaces for Scientific Computing

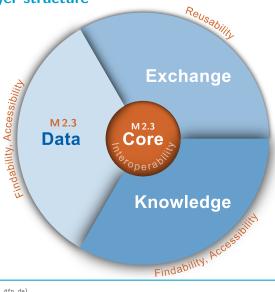
M3 Benchmark Framework

M4 Description and Design of FAIR CSE workflows

TA2 Objectives

- Verified research data in scientific computing and its fields of application
- FAIR principles for computer-based experiments and the entailing data
- experiments and the entailing data
 Ontology of mathematical objects
- Confirmable workflows for trustworthy computations
- Dissemination of numerical methods and algorithms





Interplay with other Consortia

case studies with other disciplines

Outline

Scientific computing within MaRDI

M 2.3 — MaRDIMark

Model Order Reduction Wiki (MORWiki)

Model Order Reduction Benchmarker (MORB)

Analyzing a Collection of Collections (MathBench)

M 2.3 — MaRDIMark

A general-purpose benchmarking framework for comparing implementations of algorithms using problems native to a community

Aims:

- ▶ Generic, extensible toolkit
- ► Language-agnostic interoperability
- ► Fair comparison among different implementations of algorithms (e.g., from different libraries, packages, toolboxes, etc.)
- ► Flexible (community-driven) performance measures

M2.3 — MaRDIMark

Main Elements

Problems

data. metadata

Methods

code. executable, metadata

Driver

interfaces. parameters

Analysis

performance measures

Explorer

distillation. result browser

Tasks

- Database of curated benchmarks
- formats, raw or analyzed?)

Connections

- Uses knowledge graph Uses open interfaces
- (M2.1)(M2.2)
- Uses confirmable workflows
- (M2.4)(TA3)
- Has high synergetic potential
- (TA5) Integrates into MaRDI Portal

Problems

data.

metadata

M2.3 — MaRDIMark

Main Elements

Methods

code. executable, metadata

Driver

interfaces. parameters

Analysis

performance measures

Explorer

distillation. result browser

(M2.1)

Tasks

- Database of curated benchmarks
- formats, raw or analyzed?)

Connections

Uses knowledge graph

(M2.2)Uses open interfaces

Uses confirmable workflows

(M2.4)(TA3)

Has high synergetic potential

(TA5) Integrates into MaRDI Portal

M 2.3 — MaRDIMark

Problems data.

metadata

X2: Data

Methods

code, executable, metadata

xz: Da

Main Elements

Driver

interfaces, parameters

X1: Core

Analysis

performance measures

X2: Data

Explorer

distillation, result browser

4: Knowled

Tasks

- Assembly of domain-independent specifications
- Database of curated benchmarks
- Result data (schemes, amounts, formats, raw or analyzed?)
- Classification, visualization?

Connections

Uses knowledge graph

(M 2.2)

Uses open interfaces
 Uses confirmable workflows

(M 2.4)

(M2.1)

Has high synergetic potential

(TA3)

► Integrates into MaRDI Portal (TA5)

Outline

Scientific computing within MaRDI

M 2.3 — MaRDIMark

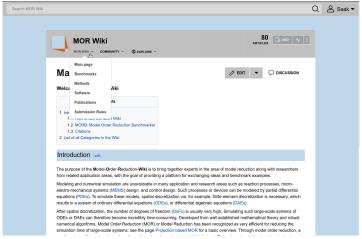
Model Order Reduction Wiki (MORWiki)

A community platform as a prototype for a curated benchmark collection

Tasks and challenges

Model Order Reduction Benchmarker (MORB)

Analyzing a Collection of Collections (MathBench)



Model Order Reduction Wiki (MORWiki)

A community platform as a prototype for a curated benchmark collection

http://modelreduction.org

Model Order Reduction Wiki (MORWiki)

A community platform as a prototype for a curated benchmark collection

Services provided

- Descriptions of basic MOR methods
- Collection of curated benchmark examples
- Description and comparison of available MOR software
- ▶ MOR literature aggregation and BibTeX data
- ► Compilation of community events

Lessons learned

- ▶ Encourage community engagement via low contribution barrier:
 - Easy access
 - ► Simple formats
 - ► Small rule-sets
- ► Ensure content licensing and create proper citation culture
- ► Incentivize users for their contributions

Model Order Reduction Wiki (MORWiki)

Tasks and challenges

Licensing

- ▶ Old benchmark models without licenses
 - ▶ SLICOT Collection collected 2002–2006
 - Oberwolfach Collection circa 2005
- ▶ Benchmark descriptions and illustrations in the wiki

Assembling metadata

- Classic data properties (creators, editors, etc.)
- Mathematical properties of
 - be the systems modeled by the benchmark data
 - ▶ the numerical data itself (e.g., matrix sparsity, symmetry, condition number, etc.)

Outline

Scientific computing within MaRDI

M 2.3 — MaRDIMark

Model Order Reduction Wiki (MORWiki)

Model Order Reduction Benchmarker (MORB)

MORB 0.1 — benchmarking stable LTI Systems in MATLAB

Analyzing a Collection of Collections (MathBench)

MORB 0.1 — benchmarking stable LTI Systems in MATLAB

Linear Time-Invariant (LTI) System

$$E\dot{x}(t) = Ax(t) + Bu(t), \qquad \Leftrightarrow \qquad H(s) = C(sE - A)^{-1}B$$

$$y(t) = Cx(t) + Du(t).$$

Why so restrictive at the moment?

- ► Most MORWiki benchmarks are LTI or parametric LTI
- ▶ Most MOR software for LTI systems is written in MATLAB
- ► Simple proof-of-concept to get feedback on

MORB 0.1 — benchmarking stable LTI Systems in MATLAB

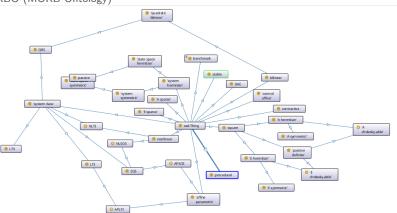
Challenges

- Ensuring all benchmark data is encoded uniformly (.mat, v7.3)
- ▶ Calling external software as "black boxes" and without unnecessary overhead
- Determining what counts as a unique implementation of an algorithm ("algorithm isotope")
- Finding subroutines that compute measures (e.g., error, speed, etc.) efficiently and accurately

MORB 0.1 — benchmarking stable LTI Systems in MATLAB

Mostly completed tasks

- Automated computation of mathematical metadata
 - ▶ Still ongoing for large systems (symmetry, stability, passivity, contractivity, etc.)
- Database of benchmark-metadata
 - ▶ Interns (A. Stage and M. Speidel) worked on MORBO (MORB Ontology) and search interface
- ► Balanced Truncation (BT) algorithm isotopes for Control Systems Toolbox, M-M.E.S.S., MORLAB, and pyMOR



MORB 0.1 — benchmarking stable LTI Systems in MATLAB

MORBO (MORB Ontology)

MORB 0.1 — benchmarking stable LTI Systems in MATLAB

MORB search tool / database

filename MORWINIPag eName	directory	MORWINLINK	nStates	ninputs	nOutputs	components	nParam eters	systemClass	ISDAE	daeDiff Index	is Square	is State Spa ce Symm	is Sys Sym m	isPassive	isContracti ve	is Stable	nUmstabPo les	isASymn	isACholAbl e	IsASparse	Asnn	condA
near1DBeam_n14m1q1 Linear 1D Bear obe	rwolfach	https://moneki.m	14	- 1	- 1	B, C, E, K, M	0	LTI-808			- 1	0	- 1					NaN	NaN	NaN	NaN	NaN
onlinearHeatTransfer_n1 Nonlinear Heat obe	rwolfach	https://monyki.m	15	2	2	A, B, C, E	0	LTIFOS	0	0	1	0	0			0	15	1	1	1	43	4.80E+00
onlinearHeatTransfer_n1 Nonlinear Heat obe		https://monyki.m	15	2	2	A, B, C, E, F, f	0	NUTIFOS			1	NaN	Net					1	1	1	43	4.80E+00
sear1DBeam_n18m1q1 Linear 1D Bear obe		https://monoki.m	18	1	1	B, C, E, K, M	0	LTI-808			1	0	1					NaN	NaN	NaN	NaN	NaN
lectrostaticBeam_n38m1 Electrostatic Be obe	rwolfach	https://monylei.m	38	1	1	B, C, E, F, K, M, f	0	NLTI-808			1	NaN	NaN					NaN	NaN	NaN	NaN	NaN
uildingModel_n48m1q1 Building Model slice	ot	https://monyki.m	48	1	1	A, B, C	0	LTIFOS	0	0	1	0	1	0	0	1	0	0	0	1	1176	1.23E+04
ewEngland_n66m1q1 Power System pow	ver_system	https://monoki.m	66	1	1	A, B, C	0	LTHFOS	0	0	1	0	1	0	0	0	1	0	0	0	NaN	3.03E+11
onvectionReaction_s84r Convection Residio	ot so	https://monviki.m.	84	1	1	A, B, C	0	LTI-FO8	0	0	1	0	1	0	0	0	1	0	0	1	382	7.36E+00
rSommerfeld_n100m1q On-Sommerfel slice	ot	https://monwisi.m	100	- 1	- 1	A, B, C	0	LTIFOS	0	0	1	0	1	0	0	1	0	0	0	1	10000	7.36E+02
dPlayer_n120m2q2 CD Player slice		https://monoki.m	120	2	2	A, B, C	D	LTHFOS	0	0	1	0	0	0	0	1	0	0	0	1	240	1.81E+04
eatEquation_n200m1q1 Heat Equation slice	ot	https://moneki.m		1	1	A, B, C, E	0	LTI-FOS	0	0	1		1			0	4	1	0	1	566	8.51E+03
indom_n200m1q1 Random slice	ot	https://monviol.m	200	1	1	A, B, C	0	LTIFOS	0	0	1	0	1	0	0	1	0	0	0	1	2132	3.00E+03
ansmissionLines_n256n Transmission L slice	ot	https://monyki.m	256	2	2	A, B, C, E	D	LTHFOS	0	1	1	0						1	1	0	255	2.225+05
s_n270m3q3 International Spalice		https://moneki.m	270	3	3	A, B, C	0	LTI-FO8	0	0	1	0	0	0	0	1	0	0	0	1	405	9.68E+03
(CircuitEquations_n306) RCL Circuit Eq abe	rwolfach	https://monyki.m	306	2	2	A, B, C, E	0	LTIFOS	1		1	0				0	168	0	0	1	696	lef
ampedBeam_n346m1q* Clamped Bear slice	ot	https://monyki.m	348	1	1	A, B, C	0	LTI-FOS	0	0	1	0	1	0	0	1	0	0	0	1	60726	3.74E+03
lectrostaticBeam_n298e Electrostatic Bi obe		https://monoki.m	366	1	1	B, C, E, F, K, M, f	0	NLTI-SOS			1	NaN	NaN					New	NaN	NaN	NaN	NaN
onlinearHeatTransfer_ni Nonlinear Heat obe	rwolfach	https://monviki.m	410	2	2	A, B, C, E, F, f	0	NLTI-FO8			1	NaN	NaN					1	1	1	1228	3.37E+05
eecModel_n490m1q1 PEEC Model (5 slice	ot	https://monviol.m	480	1	- 1	A, B, C, E	0	LTIFOS	1		1	0	1			0	264	1	0	1	1345	1.85E+14
rsa_n578rr9q9 Modified Nodal slice		https://monoks.m		9	9	A, B, C, E	0	LTHFOS	1		1	0				0	290	0	0	1	1094	2.63E+09
arthAtmosphere_n669m Earth Atmosph slice		https://moneki.m		1	1	A, B, C	0	LTI-FO8	0	0	1		1	0	0	1		0	0	0	357406	1.60E+02
na_n960m4q4 Modified Nodal slice	ot	https://monviol.m	960	4	4	A, B, C, E	0	LTIFOS	1		1	0				0	258	0	0	1	2872	6.03E+07
enz/FOM_n1006rn1q1 Penzfs FOM slice	ot	https://moneki.m	1005	1	1	A, B, C	D	LTHFOS	0	0	1	0	1			0	258	0	0	1	1012	1.00E+03
	rwolfach	https://moneki.m	1357	7	6	A, B, C, E	0	LTI-FO8	0	0	0	0	0			1	0	1	0	1	8985	2.23E+04
s_n1412m3q3 International Si slice	ot	https://monylei.m	1412	3	3	A, B, C	0	LTIFOS	0	0	1	0	0			1	0	0	0	1	2118	7.75E+01
eekinductor_n1434m1q1 Peek Inductor obe	rwolfach	https://monyki.m	1434	1	1	A, B, C, E	0	LTI-POS	0	0	1	0	1			1	0	1	0	1	18228	1.47E+00
ansmissionLines_n1600 Transmission L mis-		https://monoki.m	1600	14	14	A, B, C, E	0	LTI-FOS	0	1	1	0						0	0	1	5280	lef
nableOpticalFilter_n166 Tunable Optica obe		https://monylsi.m		- 1	6	A, B, C, E	0	LTI-FO8	0	0	0	0	0			1	0	1	0	1	10750	7.23E+04
CircuitEquations_n184 RCL Circuit Eq obe	rwolfach	https://monwisi.m	1841	16	10	A, B, C, E	0	LTIFOS	1		1	0	1			0	945	0	0	1	5881	4.04E+03
rcularPiston_n2025m1q Circular Piston obe	rwolfach	https://monoki.m		1	2025	B, C, E, K, M	0	LTI-SOS			0	0	0					14414	NaN	NeN	NaN	NeN
ansmissionLines_n2624 Transmission L mis-	c	https://monylei.m	2924	30	30	A, B, C, E	0	LTI-FO8	0	1	1							0	0	1	8640	lef
ermalModel_n4257m1q Thermal Model obe	rwolfach	https://monwiki.m	4257	- 1	7	A, B, C, E	3	AP-LTI-FOS	0	1	0	0	0									
irromanaThouses n425 Mirromana The obe	raniferh.	hitra Oromaki ra	4257	1	7	ABCE		ITUEOS		0	0		0						0	- 1	37465	2.520+16

MORB 0.1 — benchmarking stable LTI Systems in MATLAB

MORB test and algorithm configuration


```
"norm id": ["l0","l1","l2","linf","h2"],
   "time points": 250.
   "h2 method": "lyap",
    "ml bodemag":
       "FreqRange": [-8,8],
       "ShowPlot": 0,
    "ml sigmaplot":
       "FreqRange": [-8,8],
       "ShowPlot": 0,
       "MaxPoints":500
    "ml frobeniusplot":
       "FregRange": [-8,8],
       "ShowPlot": 0.
       "MaxPoints": 500
"bode opt":
   "FreqRange": [-8,8],
   "MaxPoints": 500
    "max order": 100}
```


MORB 0.1 — benchmarking stable LTI Systems in MATLAB

MORB reports

- Measures: timings and error
- ▶ Plots: error, Bode diagrams, sigma plot, and Frobenius plot
- TeX report: autogenerated with specifications, simple formatting, and system info
- ▶ End product: PDF that can be easily shared with colleagues

MORB 0.1 — benchmarking stable LTI Systems in MATLAB

Ongoing and future tasks

- Upload standardized benchmark data to Zenodo with correct licenses
- ► Integrate MORBO with existing ontologies from MaRDI collaborators (MaRDIPortal, AlgoData, etc.)
- Publish MORB search tool in MORWiki
- ▶ Refactor MORB 0.1 in python and implement more algorithms
- ► Solicit feedback from the community

Outline

Scientific computing within MaRD

M 2.3 — MaRDIMark

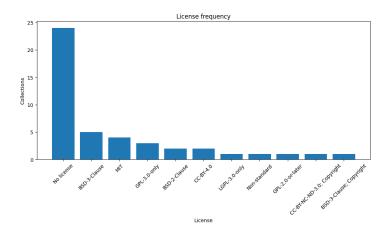
Model Order Reduction Wiki (MORWiki)

Model Order Reduction Benchmarker (MORB)

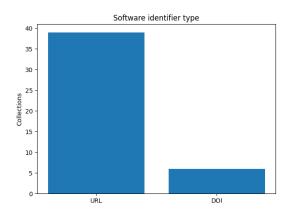
Analyzing a Collection of Collections (MathBench)

Analyzing a Collection of Collections (MathBench) Research Question

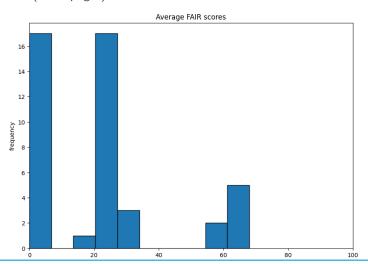
What is the state of affairs in mathematical data collections?



Analyzing a Collection of Collections (MathBench) Licenses Used

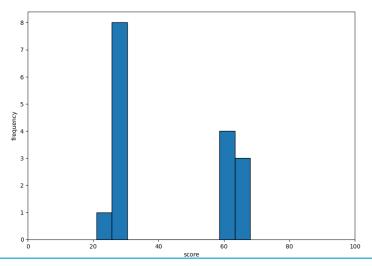


Analyzing a Collection of Collections (MathBench) Dataset Identifiers



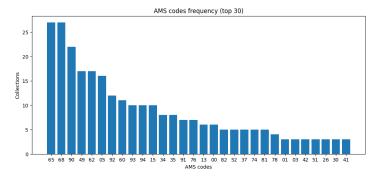
FAIR Scores (Homepages)

FAIR Scores (Homepages)

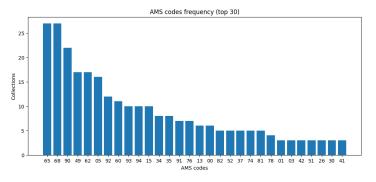


FAIR Scores (GitHub & Zenodo)

FAIR Scores (GitHub & Zenodo)



Mathematical Subject Classification 2020



Mathematical Subject Classification 2020

- 65 Numerical analysis
- 68 Computer science
- 90 Operations research, mathematical programming
- 30 Functions of a complex variable
- 41 Approximations and expansions

MaRDI TA2 Team

Dmitry Kabanov

Jens Saak

Kathryn Lund

Pavan Veluvali

Stephan Rave

Peter Benner

Frank Wübbeling

Jan Heiland

